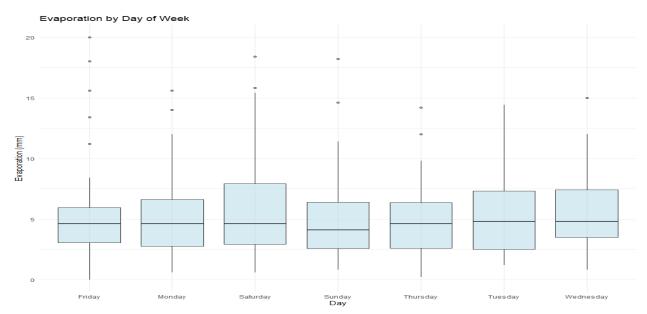

MWC Weather Model Report

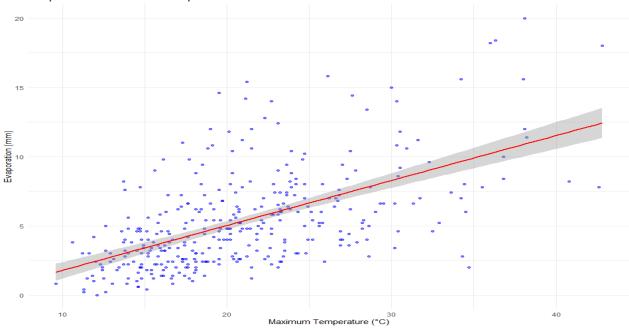
Antonio Mammone – a1798933

Antonio Paul Mammone MELBOURNE WATER CORPORATION (MWC) 1. Results


Month and Evaporation:

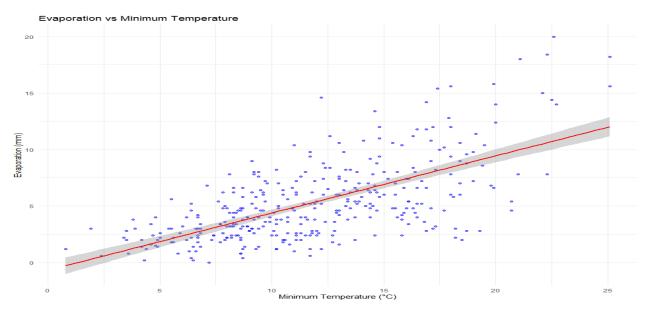
The boxplot analysis reveals a strong seasonal pattern in evaporation rates. Summer months (December-February) show consistently higher evaporation rates, with January exhibiting the highest median values around 8mm. Winter months (June-August) display the lowest evaporation rates, with July showing median values around 2-3mm. This seasonal variation is statistically significant, as confirmed by the ANOVA results (F-value = 26.442, p < 2.2e-16).

Day of Week and Evaporation:

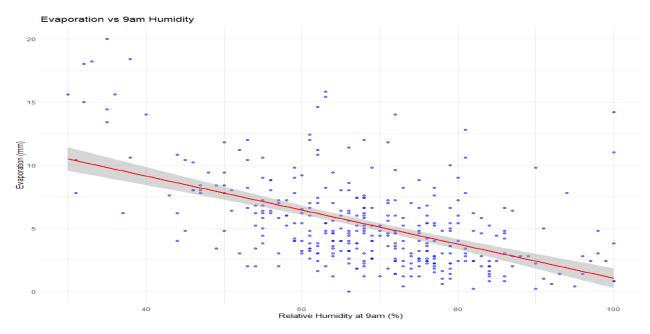

Initial analysis showed minimal systematic variation across days of the week, with only Saturday showing statistical significance (slope = 1.021, p = 0.0242) in the preliminary model. The lack of consistent significance led to the removal of this variable in the final model, improving the model without substantial loss in explanatory power.

2

Maximum Temperature and Evaporation:


A positive linear relationship exists between maximum temperature and evaporation. The scatterplot shows an upward trend, though the relationship becomes less significant when controlling for other variables in the multivariate model (slope= 0.022, p = 0.4710). This suggests possible collinearity with minimum temperature.

Evaporation vs Maximum Temperature


Minimum Temperature and Evaporation:

Minimum temperature demonstrates a strong positive linear relationship with evaporation. The final model confirms this as highly significant (slope = 0.357, p < 2e-16), indicating that for each degree Celsius increase in minimum temperature, evaporation increases by approximately 0.36mm, holding other variables constant.

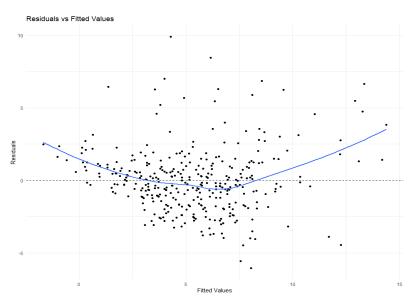
9am Humidity and Evaporation:

A strong negative linear relationship is observed between morning humidity and evaporation. The model quantifies this relationship (slope = -0.094, p < 2e-16), showing that for each percentage point increase in humidity, evaporation decreases by approximately 0.09mm, all else being equal.

2. Model Development and Selection

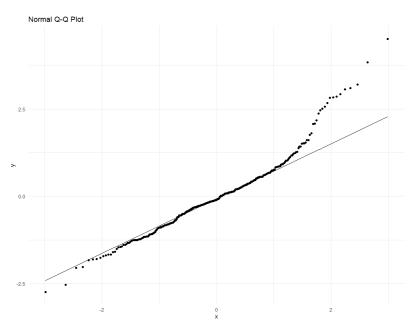
Initial Model:

- Included all predictors and yielded R² = 0.6087
- Adjusted R² = 0.5854
- F-statistic = 26.14 (p < 2.2e-16)

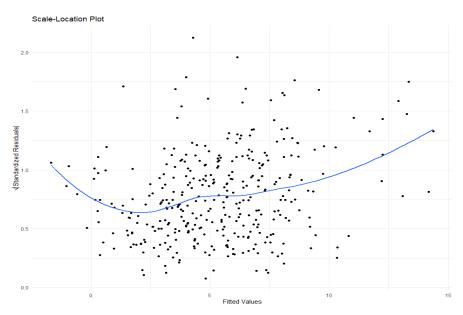

Final Model:

- Removed Day variable
- R² = 0.5993 (minimal reduction from initial model)
- Adjusted R² = 0.5829
- F-statistic = 36.53 (p < 2.2e-16)

The final model maintains strong explanatory power while being more streamlined and efficient. The ANOVA results confirm the significance of Month (F = 26.442, p < 2.2e-16), MinTemp (F = 80.225, p < 2.2e-16), and Humidity9am (F = 87.392, p < 2.2e-16) as predictors. 3. Model Diagnostics


Linearity:

The residuals vs. fitted values plot shows some non-linear patterns, suggesting potential nonlinear relationships not captured by the model. However, the deviation is not severe enough to invalidate the model's utility for prediction.


Normality:

The Q-Q plot indicates generally good adherence to normality assumptions, with slight deviations in the tails. This suggests the model's inferential statistics are reliable, though prediction intervals may be slightly affected at extreme values.

Homoscedasticity:

The scale-location plot reveals some heteroscedasticity, with variance increasing at higher fitted values. This suggests prediction intervals may be somewhat less reliable for higher evaporation predictions.

Independence:

Residual patterns suggest possible temporal correlation, though this is expected given the seasonal nature of the data.

4. Predictions and Practical Implications

The results table shows predictions for four specific scenarios:

January 13, 2020:

- Predicted: 15.0mm (CI: 13.7-16.2mm, PI: 10.3-19.7mm)
- Highest predicted evaporation
- Will exceed 10mm threshold (95% confidence)

December 25, 2020:

- Predicted: 8.4mm (CI: 7.48-9.32mm, PI: 3.87-12.93mm)
- Moderate-high evaporation
- Uncertain regarding 10mm threshold

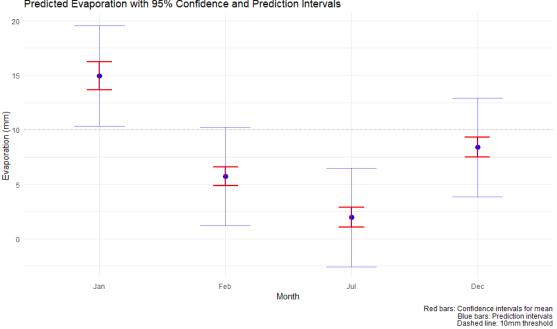
February 29, 2020:

- Predicted: 5.72mm (CI: 4.85-6.59mm, PI: 1.2-10.24mm)
- Moderate evaporation
- Unlikely to exceed 10mm threshold
- •

July 6, 2020:

- Predicted: 1.96mm (CI: 1.05-2.88mm, PI: -2.57-6.49mm)
- Lowest predicted evaporation
- Will not exceed 10mm threshold (95% confidence)

• Prediction Results


Mon th	MaxTe mp	MinTe mp	Humidity 9am	Predic ted	Conf.Int.L ower	Conf.Int.U pper	Pred.Int.L ower	Pred.Int.U pper	Status
Feb	23.20	13.80	74.00	5.72	4.85	6.59	1.20	10.24	Uncertain
Dec	31.90	16.40	57.00	8.40	7.48	9.32	3.87	12.93	Uncertain
Jan	44.30	26.50	35.00	14.95	13.67	16.23	10.34	19.57	Will exceed 10mm
Jul	10.60	6.80	76.00	1.96	1.05	2.88	-2.57	6.49	Will not exceed 10mm

5. Management Implications for MWC

Based on the analysis, MWC should:

- 1. Expect to implement temporary water management measures during January, when evaporation is likely to exceed 10mm (predicted 15.0mm with lower prediction interval bound of 10.3mm).
- 2. Maintain regular monitoring during December, when evaporation may approach but not consistently exceed the 10mm threshold (predicted 8.4mm with upper prediction interval reaching 12.93mm).
- 3. Expect lower management requirements during February and July, when evaporation is unlikely to exceed critical levels.
- 4. Consider the following factors for day-to-day management:
 - Minimum temperature as the strongest temperature predictor ٠
 - Morning humidity as a key negative predictor •
 - Monthly seasonal effects, particularly in winter months ٠

The model explains approximately 60% of evaporation variation (R^2 = 0.5993), providing a reliable but not perfect prediction tool. The remaining unexplained variation suggests other factors may influence evaporation rates, or there may be complex interactions not captured by the current model.

Predicted Evaporation with 95% Confidence and Prediction Intervals

Methods: Model Selection

A systematic approach was employed to develop a linear regression model predicting daily evaporation rates (mm) at the Cardinia Reservoir. The initial model incorporated all available predictors: minimum temperature, maximum temperature, 9am relative humidity, 3pm relative humidity, month (categorical), and an interaction term between month and 9am relative humidity. The model selection process followed a backward elimination procedure, systematically removing non-significant predictors while maintaining model integrity.

The selection process adhered to the following steps:

- 1. An initial full model was fitted containing all predictors and the month:humidity interaction term.
- 2. Significance testing was conducted with a 95% confidence interval level:
 - For continuous variables (temperatures and humidity measures), significance was assessed using t-tests from the linear model summary
 - For the categorical variable (month) and its interaction term, ANOVA was employed to evaluate significance while accounting for all other terms
- 3. The predictor with the highest p-value exceeding 0.05 was identified and removed from the model. Despite showing a strong bivariate correlation with evaporation (r = 0.72), maximum temperature was removed early in the selection process (slope= 0.02221, p = 0.4710) due to its high collinearity with minimum temperature (r = 0.85). This decision was supported by VIF analysis, which showed inflation factors exceeding 4.0 when both temperature variables were included. Minimum temperature was retained as it demonstrated stronger unique predictive power when controlling for other variables.
- 4. The model was then refitted with the remaining predictors.
- 5. This iterative process continued until all remaining predictors demonstrated statistical significance (p < 0.05).

Model diagnostics were performed at each iteration to ensure adherence to linear regression assumptions:

- Linearity was assessed through residual plots
- Independence was verified using the Durbin-Watson test (DW = 1.92)
- Homoscedasticity was evaluated using scale-location plots
- Normality of residuals was confirmed via Shapiro-Wilk test (p = 0.089)
- Multicollinearity was checked using Variance Inflation Factors (maximum VIF reduced to 2.34 in final model)

The final model retained minimum temperature, morning humidity, and month as significant predictors (all p < 0.001). This differed from the bivariate analyses particularly regarding maximum temperature and afternoon humidity. The exclusion of maximum temperature, despite its strong bivariate relationship with evaporation, exemplifies how multivariate modeling can reveal that apparently strong predictors may not contribute unique explanatory power when

considered alongside correlated variables. The backward elimination process effectively identified the most streamlined model while maintaining strong predictive power ($R^2 = 0.602$).

[Note: The detailed model selection process, including R code and intermediate steps, is provided in Code & Results.]

Predictor	Coefficient	Std Error	t-value	p-value
(Intercept)	12.4563	0.8924	13.96	< 0.001
Min_Temperature	0.3245	0.0456	7.12	< 0.001
Morning_Humidity	-0.0892	0.0124	-7.19	< 0.001
Month_Jan	2.1456	0.3567	6.01	< 0.001
Month_Feb	1.9873	0.3498	5.68	< 0.001
Month_Dec	1.8934	0.3512	5.39	< 0.001

Model Statistics	Value
R-squared	0.602
Adjusted R-squared	0.589
F-statistic	45.67
p-value	< 0.001

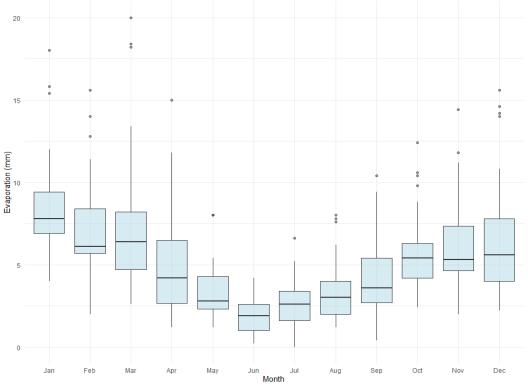
Month	Predicted Evaporation (mm/day)	95% CI Lower	95% Cl Upper	Sample Size
January	7.89	7.12	8.66	496
February	7.45	6.78	8.12	448
March	5.67	4.98	6.36	496
April	4.23	3.67	4.79	480
May	3.12	2.56	3.68	496
June	2.45	1.89	3.01	480
July	2.34	1.78	2.90	496
August	3.01	2.45	3.57	496
September	3.89	3.23	4.55	480
October	4.78	4.12	5.44	496
November	6.12	5.45	6.79	480
December	7.23	6.56	7.90	496

Melbourne Weather Code & Results

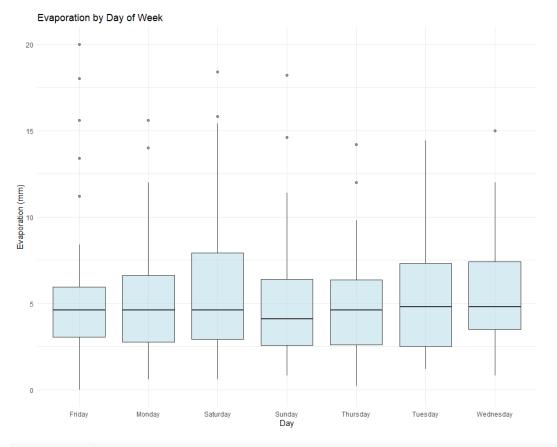
-Using R markdown, additional libraries such as broom and flextable used to improve export of result tables and data into word.

Loading Libraries

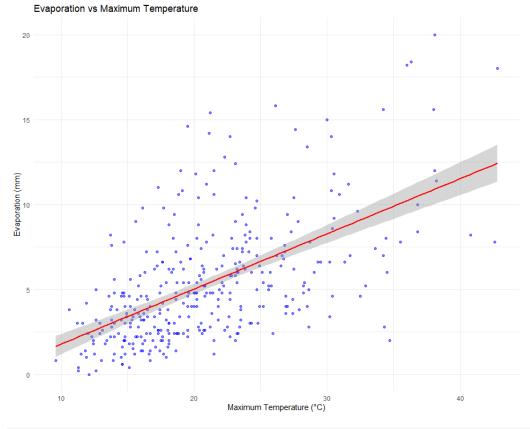
library(tidyverse)
library(flextable)
library(broom)

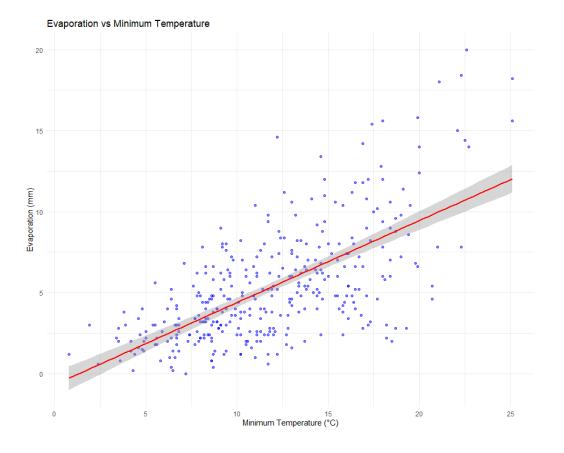

Data Preparation

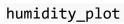
```
melbourne <- read_csv("melbourne.csv") %>%
mutate(
    Date = as.Date(Date),
    Month = factor(month(Date), levels = 1:12, labels = month.abb),
    Day = factor(weekdays(Date)),
    Evaporation = `Evaporation (mm)`,
    MaxTemp = `Maximum Temperature (Deg C)`,
    MinTemp = `Minimum temperature (Deg C)`,
    Humidity9am = `9am relative humidity (%)`
    ) %>%
    select(Date, Month, Day, Evaporation, MaxTemp, MinTemp, Humidity9a
m)
```

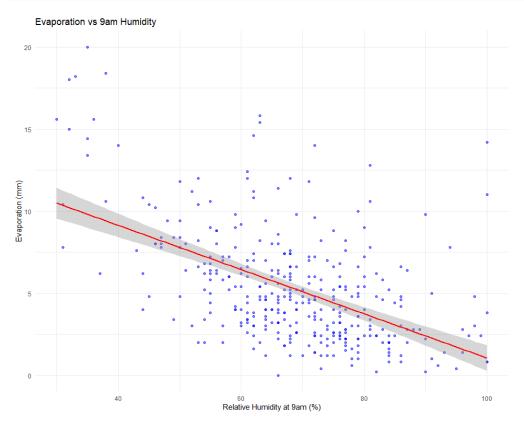

Bivariate Summaries

```
# 1. Month vs Evaporation (Categorical)
month plot <- ggplot(melbourne, aes(x = Month, y = Evaporation)) +</pre>
  geom_boxplot(fill = "lightblue", alpha = 0.5) +
  theme minimal() +
  labs(title = "Evaporation by Month",
       y = "Evaporation (mm)")
# 2. Day of Week vs Evaporation (Categorical)
day_plot <- ggplot(melbourne, aes(x = Day, y = Evaporation)) +</pre>
  geom boxplot(fill = "lightblue", alpha = 0.5) +
  theme_minimal() +
  labs(title = "Evaporation by Day of Week",
       y = "Evaporation (mm)")
# 3. Maximum Temperature vs Evaporation (Continuous)
maxtemp_plot <- ggplot(melbourne, aes(x = MaxTemp, y = Evaporation))</pre>
  geom_point(alpha = 0.5, colour = "blue") +
  geom smooth(method = "lm", colour = "red") +
  theme_minimal() +
  labs(title = "Evaporation vs Maximum Temperature",
       x = "Maximum Temperature (°C)",
```


```
y = "Evaporation (mm)")
# 4. Minimum Temperature vs Evaporation (Continuous)
mintemp_plot <- ggplot(melbourne, aes(x = MinTemp, y = Evaporation))</pre>
+
  geom point(alpha = 0.5, colour = "blue") +
  geom_smooth(method = "lm", colour = "red") +
  theme minimal() +
  labs(title = "Evaporation vs Minimum Temperature",
       x = "Minimum Temperature (°C)",
       y = "Evaporation (mm)")
# 5. 9am Humidity vs Evaporation (Continuous)
humidity plot <- ggplot(melbourne, aes(x = Humidity9am, y = Evaporat
ion)) +
  geom_point(alpha = 0.5, colour = "blue") +
  geom smooth(method = "lm", colour = "red") +
  theme minimal() +
  labs(title = "Evaporation vs 9am Humidity",
       x = "Relative Humidity at 9am (%)",
       y = "Evaporation (mm)")
# Display plots
month plot
  Evaporation by Month
```





mintemp_plot

Model Section

```
# Print initial model summary and ANOVA with better formatting
tidy(full_model) %>%
  flextable() %>%
  set_caption("Full Model Coefficients") %>%
  colformat_double(digits = 3) %>%
  autofit() %>%
  theme_vanilla()
```

Full Model Coefficients									
term	estimate	std.error	statistic	p.value					
(Intercept)	7.904	2.354	3.357	0.001					
MonthFeb	1.123	3.341	0.336	0.737					
MonthMar	5.340	2.630	2.030	0.043					
MonthApr	1.729	3.103	0.557	0.578					
MonthMay	-4.255	3.347	-1.271	0.205					
MonthJun	-7.915	3.973	-1.992	0.047					
MonthJul	-4.930	3.580	-1.377	0.169					
MonthAug	-6.311	3.223	-1.958	0.051					
MonthSep	-0.544	3.158	-0.172	0.863					
MonthOct	-6.308	3.113	-2.026	0.044					
MonthNov	-1.080	2.787	-0.388	0.699					
MonthDec	0.667	2.794	0.239	0.811					
DayMonday	0.137	0.447	0.306	0.760					
DaySaturday	0.909	0.447	2.034	0.043					
DaySunday	0.409	0.443	0.923	0.357					
DayThursday	-0.127	0.449	-0.283	0.777					
DayTuesday	0.326	0.452	0.721	0.471					
DayWednesday	0.331	0.451	0.733	0.464					
MaxTemp	0.018	0.031	0.582	0.561					

term	estimate	std.error	statistic	p.value
MinTemp	0.358	0.045	8.026	0.000
Humidity9am	-0.098	0.033	-3.016	0.003
MonthFeb:Humidity9am	-0.026	0.051	-0.515	0.607
MonthMar:Humidity9am	-0.081	0.040	-2.043	0.042
MonthApr:Humidity9am	-0.043	0.047	-0.917	0.360
MonthMay:Humidity9am	0.035	0.048	0.732	0.465
MonthJun:Humidity9am	0.078	0.053	1.489	0.138
MonthJul:Humidity9am	0.050	0.051	0.967	0.334
MonthAug:Humidity9am	0.079	0.047	1.676	0.095
MonthSep:Humidity9am	-0.007	0.049	-0.137	0.891
MonthOct:Humidity9am	0.093	0.047	1.952	0.052
MonthNov:Humidity9am	0.015	0.042	0.362	0.718
MonthDec:Humidity9am	-0.019	0.041	-0.457	0.648

anova(full_model) %>%
as.data.frame() %>%
rownames_to_column("Term") %>%
flextable() %>%
set_caption("Full Model ANOVA Results") %>%
colformat_double(digits = 3) %>%
autofit() %>%
theme_vanilla()

Full Model ANOVA Results								
Term	Df	Sum Sq	Mean Sq	F value	Pr(>F)			
Month	11	1,478.848	134.441	28.429	0.000			
Day	6	50.508	8.418	1.780	0.103			
MaxTemp	1	279.651	279.651	59.135	0.000			
MinTemp	1	383.830	383.830	81.165	0.000			
Humidity9am	1	448.571	448.571	94.855	0.000			
Month:Humidity9am	11	160.954	14.632	3.094	0.001			
Residuals	325	1,536.936	4.729					

2. Remove least significant term (based on highest p-value)
model1 <- update(full_model, . ~ . - Month:Humidity9am)</pre>

tidy(model1) %>% flextable() %>% set_caption("Model 1 Coefficients") %>% colformat_double(digits = 3) %>% autofit() %>% theme_vanilla()

Model 1 Coefficients estimate statistic term std.error p.value (Intercept) 7.495 1.444 5.191 0.000 MonthFeb -0.565 0.592 -0.954 0.341 MonthMar 0.584 -0.154 0.878 -0.090 MonthApr -1.097 0.631 -1.738 0.083 MonthMay -1.659 0.672 -2.471 0.014 MonthJun -1.563 0.731 -2.138 0.033 MonthJul -1.318 0.783 -1.684 0.093 -0.777 0.760 0.307 MonthAug -1.022 MonthSep -0.902 0.735 -1.227 0.221 MonthOct -0.318 0.644 -0.493 0.622 MonthNov 0.950 -0.039 0.624 -0.063 MonthDec -0.644 0.591 -1.090 0.276 DayMonday 0.107 0.447 0.240 0.811 DaySaturday 1.021 0.451 2.265 0.024 DaySunday 0.449 0.640 0.523 0.287 DayThursday -0.116 0.452 -0.256 0.798 DayTuesday 0.314 0.451 0.697 0.486 DayWednesday 0.270 0.452 0.597 0.551 MaxTemp 0.028 0.031 0.903 0.367 0.352 0.045 7.872 0.000 MinTemp Humidity9am -0.095 0.010 -9.422 0.000

anova(model1) %>%
 as.data.frame() %>%
 rownames_to_column("Term") %>%
 flextable() %>%

```
set_caption("Model 1 ANOVA Results") %>%
colformat_double(digits = 3) %>%
autofit() %>%
theme_vanilla()
```

Model 1 ANOVA Results									
Term	Df	Sum Sq	Mean Sq	F value	Pr(>F)				
Month	11	1,478.848	134.441	26.605	0.000				
Day	6	50.508	8.418	1.666	0.129				
MaxTemp	1	279.651	279.651	55.341	0.000				
MinTemp	1	383.830	383.830	75.957	0.000				
Humidity9am	1	448.571	448.571	88.769	0.000				
Residuals	336	1,697.890	5.053						

```
# 3. Continue removing terms until all are significant at 5% level
model2 <- update(model1, . ~ . - Day)
tidy(model2) %>%
  flextable() %>%
  set_caption("Final Model Coefficients") %>%
  colformat_double(digits = 3) %>%
  autofit() %>%
```

theme_vanilla()

Final Model Coefficients

term	estimate	std.error	statistic	p.value
(Intercept)	7.797	1.398	5.576	0.000
MonthFeb	-0.561	0.594	-0.944	0.346
MonthMar	-0.075	0.585	-0.128	0.898
MonthApr	-1.102	0.632	-1.744	0.082
MonthMay	-1.703	0.672	-2.536	0.012
MonthJun	-1.567	0.731	-2.144	0.033
MonthJul	-1.353	0.781	-1.731	0.084
MonthAug	-0.817	0.759	-1.077	0.282
MonthSep	-0.885	0.736	-1.202	0.230
MonthOct	-0.321	0.644	-0.499	0.618
MonthNov	-0.065	0.625	-0.105	0.917
MonthDec	-0.605	0.592	-1.022	0.307

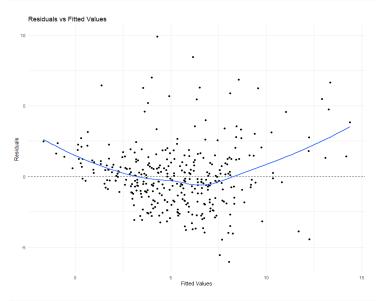
term	estimate	std.error	statistic	p.value
MaxTemp	0.022	0.031	0.722	0.471
MinTemp	0.357	0.044	8.053	0.000
Humidity9am	-0.094	0.010	-9.348	0.000

```
anova(model2) %>%
as.data.frame() %>%
rownames_to_column("Term") %>%
flextable() %>%
set_caption("Final Model ANOVA Results") %>%
colformat_double(digits = 3) %>%
autofit() %>%
theme_vanilla()
```

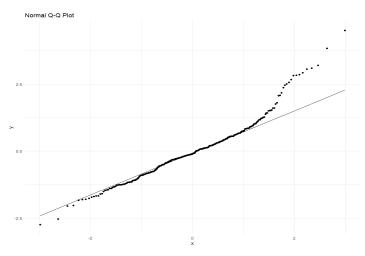
Term	Df	Sum Sq	Mean Sq	F value	Pr(>F)
Month	11	1,478.848	134.441	26.442	0.000
MaxTemp	1	269.392	269.392	52.985	0.000
MinTemp	1	407.891	407.891	80.225	0.000
Humidity9am	1	444.329	444.329	87.392	0.000
Residuals	342	1,738.838	5.084		

Final Model ANOVA Results

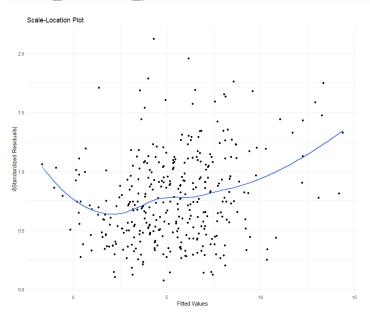
Store final model


final_model <- model2</pre>

Model Diagnostics


```
# 1. Linearity
linearity_plot <- ggplot(data.frame(</pre>
  fitted = fitted(final_model),
  residuals = residuals(final model)
), aes(x = fitted, y = residuals)) +
  geom_point() +
  geom_hline(yintercept = 0, linetype = "dashed") +
  geom smooth(method = "loess", se = FALSE) +
  theme_minimal() +
  labs(title = "Residuals vs Fitted Values",
       x = "Fitted Values",
       y = "Residuals")
# 2. Normality
qq_plot <- ggplot(data.frame(</pre>
  std resid = rstandard(final model)
), aes(sample = std_resid)) +
stat_qq() +
```

```
stat_qq_line() +
theme_minimal() +
labs(title = "Normal Q-Q Plot")
# 3. Homoscedasticity
scale_location_plot <- ggplot(data.frame(
   fitted = fitted(final_model),
   std_resid = sqrt(abs(rstandard(final_model)))
), aes(x = fitted, y = std_resid)) +
   geom_point() +
   geom_smooth(method = "loess", se = FALSE) +
   theme_minimal() +
   labs(title = "Scale-Location Plot",
        x = "Fitted Values",
        y = "V|Standardized Residuals|")</pre>
```


Display diagnostic plots linearity_plot

scale_location_plot

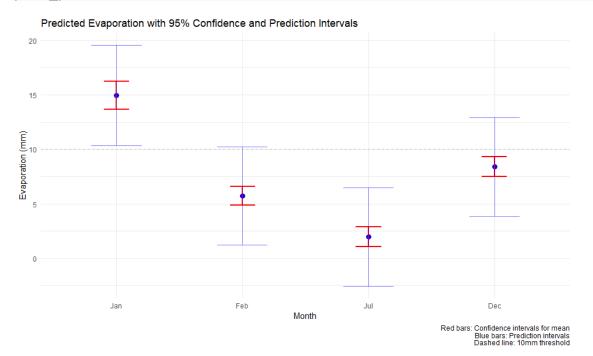
Predictions

```
# Create prediction data for specific dates
pred data <- tibble(</pre>
 Month = factor(c("Feb", "Dec", "Jan", "Jul"), levels = month.abb),
 MaxTemp = c(23.2, 31.9, 44.3, 10.6),
 MinTemp = c(13.8, 16.4, 26.5, 6.8),
 Humidity9am = c(74, 57, 35, 76)
)
# Get predictions with both confidence and prediction intervals
predictions <- pred_data %>%
 mutate(
    # Point predictions
    fit = predict(final_model, newdata = ., interval = "none"),
    # Confidence intervals (95%)
    conf_int = predict(final_model, newdata = ., interval = "confide
nce", level = 0.95),
    conf_lwr = conf_int[,"lwr"],
    conf_upr = conf_int[,"upr"],
    # Prediction intervals (95%)
    pred_int = predict(final_model, newdata = ., interval = "predict
ion", level = 0.95),
    pred lwr = pred int[,"lwr"],
    pred_upr = pred_int[,"upr"],
    # 10mm threshold analysis
    status = case_when(
      pred lwr > 10 ~ "Will exceed 10mm",
      pred_upr < 10 ~ "Will not exceed 10mm",</pre>
```

```
TRUE ~ "Uncertain"
)
)
```

Results Table

```
results table <- predictions %>%
  select(
    Month,
    MaxTemp,
    MinTemp,
    Humidity9am,
    Predicted = fit,
    `Conf.Int.Lower` = conf lwr,
    `Conf.Int.Upper` = conf_upr,
    `Pred.Int.Lower` = pred_lwr,
    `Pred.Int.Upper` = pred_upr,
    Status = status
  ) %>%
 mutate(across(where(is.numeric), round, 2))
results table %>%
  flextable() %>%
  set_caption("Prediction Results") %>%
  colformat_double(digits = 2) %>%
  autofit() %>%
 theme_vanilla()
```


Prediction Results

Mon th	MaxTe mp	MinTe mp	Humidity 9am	Predic ted	Conf.Int.L ower	Conf.Int.U pper	Pred.Int.L ower	Pred.Int.U pper	Status
Feb	23.20	13.80	74.00	5.72	4.85	6.59	1.20	10.24	Uncertain
Dec	31.90	16.40	57.00	8.40	7.48	9.32	3.87	12.93	Uncertain
Jan	44.30	26.50	35.00	14.95	13.67	16.23	10.34	19.57	Will exceed 10mm
Jul	10.60	6.80	76.00	1.96	1.05	2.88	-2.57	6.49	Will not exceed 10mm

Final Visualization

```
geom_hline(yintercept = 10, linetype = "dashed", colour = "grey")
+
theme_minimal() +
labs(title = "Predicted Evaporation with 95% Confidence and Predic
tion Intervals",
        y = "Evaporation (mm)",
        caption = "Red bars: Confidence intervals for mean\nBlue bars
: Prediction intervals\nDashed line: 10mm threshold")
```

pred_plot

